134. Physical Properties and Chemical Constitution. Part XVII. Acetylenic Compounds and Cyanides.

By George H. Jeffery and Arthur I. Vogel.

New measurements are described of the parachors and refractivities $\left(20^{\circ}\right)$ of esters of but-3-yne-1-carboxylic acid and of dec-9-yne-1-carboxylic (10:11-undecynolic) acid. The contributions of the terminal triple bond have been computed from the general relationship

$$
\mathrm{F}=\mathrm{CH} \equiv \mathrm{CR}+4 \mathrm{H}-\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \mathrm{R}
$$

employing the values for H of Part IX ($J ., 1946,133$) and the appropriate saturated compounds to be found in previous papers of this series. The constants, which differ considerably from those previously accepted, are :

	P.	$R_{\text {C }}$.	$R_{\text {D }}$.	$R_{\text {F }}$.	$R_{\text {G }}$.	$M n_{\mathrm{D}}^{20^{\circ}}$.
F (terminal)	$40 \cdot 6$	1.959	1.977	$2 \cdot 061$	$2 \cdot 084$	-12.56

The constants similarly deduced from new experimental data for dialkyl acetylenedicarboxylates (I) and alkyl phenylpropiolates (II), in which the triple bond is non-terminal and conjugated with other groups in the molecule, are :

	P.	$R_{\text {C }}$.	$R_{\text {d }}$.	$R_{\text {F }}$.	$R_{\mathbf{G}^{\prime}}$.	$M n^{20}{ }^{\circ}$.
E in (I) (non-terminal)	$46 \cdot 8$	$3 \cdot 890$	$3 \cdot 960$	4.190	$4 \cdot 330$	-11.83
Ein (II) (non-terminal)	$45 \cdot 9$	$5 \cdot 503$	$5 \cdot 677$	$6 \cdot 277$	6.780	-6.23

New measurements upon a series of alkyl and other cyanides are also presented and these lead, when combined with the values for alkyl groups (Part XI, this vol., p. 610), to the following constants for the $\mathrm{C} \equiv \mathrm{N}$ group in saturated aliphatic cyanides :

	P.	$R_{\text {C }}$.	$R_{\text {D }}$.	$R_{\text {F }}$.	$R_{\mathrm{G}^{\prime}}$.	$M n^{20}{ }^{\circ}$.
CN	$64 \cdot 6$	$5 \cdot 431$	$5 \cdot 459$	$5 \cdot 513$	5.561	$36 \cdot 46$

The parachor contribution of $46 \cdot 6$ for the carbon-carbon triple bond appears to have been deduced initially (Sugden, $J ., 1924,125,1180$) from the values for acetylene and octyne, to which were later added ethyl and " i-butyl" phenylpropiolates (Sugden, " The Parachor and Valency", 1930, p. 42 ; no details of the preparation, densities, and surface tensions seem to have been published), and it is stated (J., loc. cit.) that this value " agress well with that found for nitriles". Sugden does not disclose how the parachor for nitrogen was calculated, nor have figures been published supporting the constancy (or otherwise) of the parachor in different types of nitrogencontaining compounds (e.g., in primary, secondary, and tertiary amines). The agreement claimed for the triple bond in acetylenic compounds and in cyanides is therefore not entirely convincing. We prefer, in the first instance to separate the two problems and to deduce independent values for the carbon-carbon triple bond in acetylenic compounds and for the $\mathrm{C} \equiv \mathrm{N}$ grouping.

Eisenlohr (Z. physikal. Chem., 1910, 75, 604; compare von Auwers, Ber., 1935, 68, 1635) utilised the data for " propargyl alcohol, propargyl acetate, propargyl ethyl ether, oenanthilidene, caprylidene, amyl propiolacetal, hexyl propiolacetal and diacetal ", but states that the figures for the acetylene bond varied considerably and consequently the final mean value could only be regarded as approximate. Notwithstanding this admission, the constants are given to four significant figures as follows :

	$R_{\text {C }}$.	$R_{\text {D }}$.	$R_{\text {F }}$.	$R_{\mathrm{G}^{\prime}}$.
\equiv	$2 \cdot 328$	$2 \cdot 398$	$2 \cdot 506$	2.538

In recent years' a number of pure acetylenic hydrocarbons and their derivatives have been prepared (compare Campbell and O'Connor, J. Amer. Chem. Soc., 1939, 61, 2898; Campbell and Eby, ibid., 1940, 62, 180; 1941, 63, 2384; Henne and Greenlee, ibid., 1945, 67, 484 ; Hennion and Banigan, ibid., 1946, 68, 1202, 1380) and their densities ($d_{4^{\circ}}^{20^{\circ}}$) and refractivities ($n_{\mathrm{D}}^{20^{\circ}}$) determined. The refractivities R_{D}, calculated with Eisenlohr's constants, are not in good agreement with the observed values : attempts to obtain improved agreement have been made by Campbell and Eveslage (ibid., 1945, 67, 1851) by assigning a new set of increments for $1-$, 2 -, 3-, 4- and 5 -acetylenes respectively and by Hennion and Banigan (ibid., 1946, 68, 1380) by employing the following atomic refractions: $\mathrm{C}^{\equiv} 3 \cdot 240, \mathrm{C}^{\alpha} 2 \cdot 779, \mathrm{C}^{\beta} 2 \cdot 605, \mathrm{C}^{\gamma} 2 \cdot 436, \mathrm{C}^{\delta} \cdot \ldots \omega 2 \cdot 418$, and H $1 \cdot 100$. Apart from the fact that the values for C and H were in error (Vogel, Part IX, J., 1946,133), the procedures of the American authors are clearly empirical : a simple method is described below which gives reasonable results.

We have determined the parachors and refractivities of a number of esters of but-3-yne-1-
carboxylic acid, $\mathrm{CH}: \mathrm{C} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{H}$, and of dec-9-yne-1-carboxylic ($10: 11$-undecynolic) acid and computed the contributions of the terminal triple bond by means of the relationship

$$
F=\mathrm{CH}: \mathrm{CR}+4 \mathrm{H}-\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \mathrm{R}
$$

utilising the values for H deduced in Part IX (loc. cit.) and the data for alkyl n-valerates (Part XIII, this vol., p. 624) and for alkyl n-undecylates as computed in Part XVI (preceding paper).

Our dec-9-yne-1-carboxylic acid was prepared by the action of excess of concentrated aqueous potassium hydroxide solution upon $9: 10$-dibromodecane-1-carboxylic acid (10:11-dibromoundecoic acid) at $150-160^{\circ}$ in the presence of small quantities of crude sodium oleylsulphonate to reduce the attendant frothing (compare Krafft, Ber., 1896, 29, 2232; Myddelton and Barrett, J. Amer. Chem. Soc., 1927, 49, 2260). It melted at 42° and its constitution was established (a) by oxidation with potassium permanganate solution, whereby an almost quantitative yield of sebacic acid was obtained :

$$
\mathrm{CH}: \mathrm{C} \cdot\left[\mathrm{CH}_{2}\right]_{8} \cdot \mathrm{CO}_{2} \mathrm{H} \longrightarrow\left[\mathrm{CH}_{2}\right]_{8}\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2}
$$

and (b) by reduction of the ethyl ester with hydrogen in the presence of Adams's platinum oxide catalyst, whereupon ethyl n-undecylate was isolated in quantitative yield and its physical properties were in excellent agreement with those deduced in Part XVI (loc. cit.).

It should be noted that dec-8-yne-1-carboxylic acid (9:10-undecolic acid), $\mathrm{CH}_{3} \cdot \mathrm{C}: \mathrm{C} \cdot\left[\mathrm{CH}_{2}\right]_{7} \cdot \mathrm{CO}_{2} \mathrm{H}, m . p .61^{\circ}$, is formed from $9: 10$-dibromodecane-1-carboxylic acid and excess of concentrated aqueous potassium hydroxide solution at 170° (Harris and Smith, J., 1935, 1108 : compare Krafft, Ber., 1878, 11, 1414; Welander, ibid., 1895, 28, 1445; Myddelton and Barrett, loc. cit.; Ashton and Smith, J., 1934, 435); the reaction is under investigation.

The results for the triple-bond contributions are collected in Table I.

Table I.

Parachor and refractivities of the triple bond from esters, $\mathrm{CH}: \mathrm{C} \cdot\left[\mathrm{CH}_{2}\right]_{n} \cdot \mathrm{CO}_{2} \mathrm{R}$.

	P.	$R_{\text {C }}$.	$R_{\text {D }}$.	R_{F}.	$R_{\mathrm{G}^{\prime}}$.	$M n^{20}{ }^{\circ}$.
Esters of but-3-yne-1-carboxylic acid, $\mathrm{CH}: \mathrm{C} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{CO}_{2} \mathrm{R}$.						
$\mathrm{R}=\mathrm{Me}$	$40 \cdot 7$	1.97	1.99	2.08	$2 \cdot 09$	-12.27
$\mathrm{R}=\mathrm{Et}$	$40 \cdot 2$	1.98	$2 \cdot 00$	2.08	$2 \cdot 12$	-12.40
$\mathrm{R}=\mathrm{Pr}^{\boldsymbol{n}}$	$40 \cdot 1$	2.01	$2 \cdot 03$	$2 \cdot 11$	$2 \cdot 13$	-12.71
$\mathrm{R}=\mathrm{Bu}^{n}$	$39 \cdot 6$	2.05	$2 \cdot 06$	$2 \cdot 15$	$2 \cdot 17$	-12.81
Esters of dec-9-yne-1-carboxylic acid, $\mathrm{CH}: \mathrm{C} \cdot\left[\mathrm{CH}_{2}\right]_{8} \cdot \mathrm{CO}_{2} \mathrm{R}$.						
$\mathrm{R}=\mathrm{Me}$	41.8	1.92	1.94	$2 \cdot 04$	2.05	-12.53
$\mathrm{R}=\mathrm{Et}$	$41 \cdot 1$	$1 \cdot 87$	1.88	1.94	1.98	-12.59
$\mathrm{R}=\mathrm{Pr}^{*}$	$40 \cdot 7$	1.91	1.94	2.03	2.05	- 12.60
Mean ${ }_{\text {E }}$	$40 \cdot 6$	1.959	1-977	2.061	2.084	- 12.56

It will be observed that the mean values for the parachors and refractivities differ appreciably from those previously accepted. The new constants apply only to terminal acetylenic compounds $\mathrm{CH}: \mathrm{CR}$; it is hoped in the near future to investigate compounds containing non-terminal carbon-carbon triple bonds $\mathrm{CR}_{1}: \mathrm{CR}_{2}$. Von Auwers (Ber., 1935, 68, 1635) gives for the D line values of 2.325 for terminal acetylenes and 2.573 for non-terminal acetylenes.

The results of similar measurements upon dialkyl acetylenedicarboxylates and alkyl phenylpropiolates-all of which are conjugated compounds-are presented in Tables II and III respectively : the experimental data for dialkyl succinates were taken from Part XIII (loc. cit.) and those for alkyl β-phenylpropionates from Part XVI (preceding paper). The high values for the refractivities were, of course, anticipated, but the higher values for the parachor (which normally does not reflect the influence of conjugation-see Part XVI on ethylenic compounds) are noteworthy.

Table II.
Parachor and refractivities for the triple bond in dialkyl acetylenedicarboxylates, $\mathrm{CO}_{2} \mathrm{R} \cdot \mathrm{C}: \mathrm{C} \cdot \mathrm{CO}_{2} \mathrm{R}$.

	P.	$R_{\text {C }}$.	$R_{\text {D }}$.	R_{F}.	$R_{G^{\prime}}$.	$M n_{\mathrm{D}}^{20^{\circ}}$.
$\mathrm{R}=\mathrm{Me}$	$46 \cdot 2$	$3 \cdot 79$	$3 \cdot 84$	$4 \cdot 05$	$4 \cdot 18$	-12.09
$\mathrm{R}=\mathrm{E} \mathrm{t}$	$48 \cdot 4$	3.94	$4 \cdot 03$	$4 \cdot 25$	$4 \cdot 39$	-12.10
$\mathrm{R}=\mathrm{Pr}^{\prime \prime}$	$48 \cdot 2$	$3 \cdot 94$	$4 \cdot 02$	$4 \cdot 25$	$4 \cdot 38$	-11.83
$\mathrm{R}=\mathrm{Pr}^{\text {i }}$ *	51.6	$3 \cdot 99$	$4 \cdot 07$	$4 \cdot 30$	$4 \cdot 45$	-11.72
$\mathrm{R}=\mathrm{Bu}^{\prime}$	$46 \cdot 3$	$3 \cdot 86$	$3 \cdot 91$	$4 \cdot 14$	$4 \cdot 30$	-11.75
$\mathrm{R}=\mathrm{Am}^{n}$	$46 \cdot 9$	$3 \cdot 97$	$4 \cdot 05$	$4 \cdot 29$	$4 \cdot 42$	-11.67
$\mathrm{R}=\mathrm{Am}^{\text {i }}$	$45 \cdot 0$	3•84	3.91	$4 \cdot 16$	$4 \cdot 31$	-11.52
Mean (excluding *)	$46 \cdot 8$	$3 \cdot 890$	3.960	4-190	$4 \cdot 330$	-11.83

Table III.
Parachor and refractivities for the triple bond in alkyl phenylpropiolates, $\mathrm{CPh}: \mathrm{C} \cdot \mathrm{CO}_{2} \mathrm{R}$.

	P.	$R_{\text {c }}$.	$R_{\text {D }}$.	R_{F}.	$R_{\mathbf{G}^{\prime}}$.	$M n_{\text {D }}^{20}$.
$\mathrm{R}=\mathrm{Et}$	$47 \cdot 0$	$5 \cdot 48$	$5 \cdot 68$	$6 \cdot 27$	6.77	-6.21
$\mathrm{R}=\mathrm{Pr}^{n}$	$46 \cdot 3$	$5 \cdot 63$	$5 \cdot 75$	6.35	6.85	-6.25
$\mathrm{R}=\mathrm{Bu}^{\text {n }}$	$44 \cdot 4$	$5 \cdot 40$	$5 \cdot 60$	$6 \cdot 21$	6.72	-6.24
Mean	$45 \cdot 9$	5.503	$5 \cdot 677$	6.277	6.780	$-6 \cdot 23$

Determination of the parachors and refractivities of seven aliphatic cyanides, allyl cyanide, trimethylene dicyanide, phenyl cyanide, and benzyl cyanide have also been made. The CN contributions for the aliphatic nitriles have been computed with the aid of the constants for the alkyl groups given in Part XI (this vol., p. 610), for trimethylene dicyanide using the CH_{2} values from Part IX ($J ., 1946,133$), phenyl cyanide from phenyl (Part XV, this vol., p. 654), and benzyl cyanide from $\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CH}_{3}-\mathrm{H}$ (Part X , this vol., p. 607, and Part IX, loc. cit.). The preferred values for CN are derived from the saturated aliphatic nitriles. The results are given in Table IV. Measurements of the densities and refractivities at $0^{\circ}, \mathbf{1 5}^{\circ}$, and 30° of a long series

Table IV.
Parachor and refractivities for the CN group in cyanides.

	P.	$R_{\text {C }}$.	$R_{\text {D }}$.	$R_{\text {F }}$.	R_{G}.	$M n_{\text {d }}{ }^{30}$.
MeCN	66.2	$5 \cdot 40$	$5 \cdot 44$	$5 \cdot 49$	$5 \cdot 54$	37.05
EtCN	65.5	$5 \cdot 42$	$5 \cdot 45$	$5 \cdot 51$	$5 \cdot 56$	36.51
$\mathrm{Pr}^{n} \mathrm{CN}$	$64 \cdot 9$	$5 \cdot 45$	$5 \cdot 46$	$5 \cdot 52$	$5 \cdot 57$	$36 \cdot 41$
$\mathrm{Bu}^{n} \mathrm{CN}$	$64 \cdot 9$	5•40	$5 \cdot 42$	$5 \cdot 47$	$5 \cdot 51$	36.58
$\mathrm{Am}^{n} \mathrm{CN}$	$63 \cdot 0$	$5 \cdot 44$	5.47	$5 \cdot 51$	$5 \cdot 56$	36.23
$\mathrm{Am}^{\text {i }} \mathrm{CN}$	$63 \cdot 9$	$5 \cdot 49$	$5 \cdot 52$	5•58	$5 \cdot 63$	$36 \cdot 30$
$\mathrm{C}_{6} \mathrm{H}_{13}{ }^{n} . \mathrm{CN}$	-	$5 \cdot 42$	$5 \cdot 45$	$5 \cdot 51$	$5 \cdot 56$	36.12
Mean $\mathrm{C} \equiv \mathrm{N}$	$64 \cdot 6$	$5 \cdot 431$	$5 \cdot 459$	$5 \cdot 513$	$5 \cdot 561$	$36 \cdot 46$
$\left[\mathrm{CH}_{2}\right]_{3}(\mathrm{CN})_{2}$	$65 \cdot 8$	$5 \cdot 31$	$5 \cdot 33$	$5 \cdot 36$	$5 \cdot 42$	$36 \cdot 39$
$\mathrm{C}_{3} \mathrm{H}_{5}^{2} \cdot \mathrm{CN} \ldots$	63.5	5-13	$5 \cdot 15$	$5 \cdot 18$	$5 \cdot 21$	36.72
$\mathrm{C}_{6} \mathrm{H}_{5}{ }^{\text {. }} \mathrm{CN}$	$69 \cdot 0$	6.07	$6 \cdot 12$	$6 \cdot 23$	6.32	$35 \cdot 70$
$\mathrm{C}_{6} \mathrm{H}_{5}{ }^{\circ} \mathrm{CH}_{2} \cdot \mathrm{CN}$	$64 \cdot 4$	5•14	$5 \cdot 17$	$5 \cdot 19$	$5 \cdot 19$	37-93

of carefully purified aliphatic nitriles have been made by Merckx, Verhulst, and Bruylants (Bull. Soc. chim. Belg., 1933, 42, 177) : although the methods of preparation, in many cases, differed from our own, the interpolated values for $d_{4^{\circ}}^{20^{\circ}}$ and $n_{\mathbf{D}}^{20^{\circ}}$ are in good agreement.

We have employed the experimental data given by Henne and Greenlee (J. Amer. Chem. Soc., $1945,67,484$) and by Hennion and Banigan (ibid., 1946, 68, 1380) for $d_{4^{\circ}}^{20^{\circ}}, n_{\mathrm{D}}^{20^{\circ}}$, and R_{D} for the calculation of the refractivity for the triple bond, utilising our own values for H and for saturated aliphatic hydrocarbons (Part IX, loc. cit.). The results for terminal acetylenes (which alone are strictly comparable with our own data for terminal acetylenic compounds) are collected in Table V.

Table V .
Values for the triple bond in hydrocarbons and alcohols with terminal acetylenic groups.

Compound.	F.	$R_{\text {d }}$, obs.	R_{D}, calc.	
			(Authors.)	(H. and B.)
Pent-1-yne	1.95	23.12	$23 \cdot 16$	$23 \cdot 10$
Hex-1-yne	1.95	$27 \cdot 77$	$27 \cdot 79$	$27 \cdot 74$
Hept-1-yne	1.95	$32 \cdot 44$	32.43	$32 \cdot 34$
5-Methylhex-1-yne	1.98.	$32 \cdot 47$	$32 \cdot 43$	32-34
Oct-1-yne $\ldots . .$.	$2 \cdot 00$	$37 \cdot 06$	37.08	36.95
Hepta-1: 6-diyne	1.96	$30 \cdot 30$	$30 \cdot 28$	29.92**
Nona-1: 8-diyne	1.94	39.52	$39 \cdot 58$	39.36 *
Prop-1-yne-3-ol	$1 \cdot 91$	$15 \cdot 34$	$15 \cdot 36$	$15 \cdot 18$ *
But-1-yne-4-ol	1.96	$19 \cdot 90$	20.01	19.99*
3: 3-Dimethylprop-1-yne-3-o	$2 \cdot 01$	$24 \cdot 77$	24.65	24.79 *

In deducing the figures for the triple bond we have employed our own (unpublished) data for the corresponding saturated alcohols. The values for the triple bond agree well with those deduced from our own measurements. The calculated values for R_{D} employing our own figures for $\mathrm{C}, \mathrm{H}, \mathrm{OH}(2 \cdot 543)$, and \equiv (in $\mathrm{CH}: \mathrm{CR}$) are given in col. 4. Hennion and Banigan's figures are in col. 5 ; those marked with an asterisk have been computed by us with their constants and Eisenlohr's values for OH .

The results for acetylenic hydrocarbons with non-terminal acetylene groups are given in Table VI. The mean value of the refractivity of the triple bond for the D line at 20° is 2.35 with a variation from the mean of $\pm 0 \cdot 10$. It would therefore appear that the refractivity of the triple bond in these compounds is greater than that in compounds with the terminal : CH group. The calculated refractivities derived with the aid of the authors' C and H constants and the above non-terminal triple bond value are reasonably satisfactory and render the highly empirical procedures of Campbell and Eveslage (J. Amer. Chem. Soc., 1945, 67, 1851) and of Hennion and Banigan (loc. cit.) superfluous.

Table VI.
Values for the triple bond in hydrocarbons with non-tevminal acetylenic groups.

Pent-2-rne Hydrocarbon.			$R_{\text {D }}$, calc.	
	F.	$R_{\text {D }}$, obs.	(Authors.)	(H. and B.)
	$2 \cdot 28$	$23 \cdot 44$	23.53	$23 \cdot 44$
Hex-3-yne	$2 \cdot 39$	28.20	28.18	28.25
Oct-2-yne	$2 \cdot 25$	$37 \cdot 31$	37.47	37.32
Oct-3-yne	$2 \cdot 40$	$37 \cdot 46$	$37 \cdot 47$	37.50
Oct-4-yne	$2 \cdot 45$	$37 \cdot 51$	$37 \cdot 47$	$37 \cdot 52$
Non-3-yne	$2 \cdot 35$	42.09	$42 \cdot 12$	$42 \cdot 12$
Dec-5-yne	$2 \cdot 36$	$46 \cdot 75$	$46 \cdot 76$	$46 \cdot 75$
Undec-5-yne	$2 \cdot 27$	$51 \cdot 31$	51.41	$51 \cdot 37$
Nona-2 : 7-diyne	$2 \cdot 42$	$40 \cdot 57$	40-36	39-88
Mean	$2 \cdot 35$			

Experimental.

Esters of But-3-yne-1-carboxylic Acid.-But-3-yne-1-carboxylic acid. Allyl bromide, b. p. 71-72 (XVI, 357), was converted into $1: 2: 3$-tribromopropane, b. p. $92-93^{\circ} / 10 \mathrm{~mm}$. (Org. Synth., Coll. Vol. I, 1941, 521), and then condensed with ethyl sodioacetoacetate (Gardner and Perkin, J., 1907, 91, 848). The pure ester, $\mathrm{CH}_{2}: \mathrm{CBr}^{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}(\mathrm{COMe}) \cdot \mathrm{CO}_{2} \mathrm{Et}, \mathrm{b} . \mathrm{p} .114-115^{\circ} / 10 \mathrm{~mm}$. (Gardner and Perkin, loc. cit., give b. p. $120-121^{\circ} / 8 \mathrm{~mm}$.), was isolated by fractionation from a Scorah flask and was treated with methyl-alcoholic potassium hydroxide (Perkin and Simonsen, $J ., 1907,91,822$) to give but-3-yne-1carboxylic acid, m. p. 54°; recrystallisation from light petroleum (b. p. $40-60^{\circ}$) raised the m. p. to $56-57^{\circ}$. The yield of acid from 46 g . of sodium, 600 ml . of absolute ethyl alcohol, 260 g . of ethyl acetoacetate, and 290 g . of tribromopropane was 21 g . A mixture of 10 g . of the acid, 80 g . of absolute methyl alcohol, and 6 g . of concentrated sulphuric acid was kept at room temperature for 1 week, poured into water, and the separated oil extracted with ether, dried, and distilled. This gave 9 g . of the methyl ester, b. p. $146 \cdot 5^{\circ} / 754 \mathrm{~mm}$. (Found : C, $64 \cdot 0 ; \mathrm{H}, 7 \cdot 3$. $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{2}$ requires C, $64 \cdot 3 ; \mathrm{H}, 7 \cdot 2 \%$).

Ethyl ester. (1) By the above method, but with 90 g . of absolute ethyl alcohol, 9 g . of this ester were obtained; b. p. $159^{\circ} / 763 \mathrm{~mm}$. (Perkin and Simonsen, loc. cit., give b. p. $160-161^{\circ}$).
(2) A mixture of 10 g . of the acid, 9 ml . of absolute ethyl alcohol, 1 ml . of concentrated sulphuric acid, and 18 ml . of sodium-dried A.R. benzene was refluxed for 12 hours. The resulting dark liquid, after being poured into water and worked up in the usual manner, afforded 7 g . of a liquid ester, b. p. $195^{\circ} / 763 \mathrm{~mm}$., $d_{4^{20}}{ }^{\circ} 1 \cdot 0049, n_{\mathrm{D}}^{20^{\circ}} 1 \cdot 4241$. It was eridently not the desired ester and was not further investigated.
n -Propyl ester. A mixture of 10 g . of the acid, 120 g . of pure n-propyl alcohol, and 8 g . of concentrated sulphuric acid, kept at room temperature for 21 days and worked up in the usual manner, gave 6 g . of the n -propyl ester, b. p. $174.5-175.5^{\circ} / 763 \mathrm{~mm}$. (Found: C, $68.4 ; \mathrm{H}, 8.7 . \mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2}$ requires $\mathrm{C}, 68.5$; $\mathrm{H}, 8 \cdot 6 \%$).
n-Butyl ester. To a cold solution of 10 g . of concentrated sulphuric acid in 180 ml . of pure n-butyl alcohol were added 12.5 g . of the acetylenic acid, the mixture was kept at room temperature for 24 days, and then poured into excess of water. The upper, organic layer was removed, washed successively with water, saturated sodium hydrogen carbonate solution until effervescence ceased, and water, dried $\left(\mathrm{CaCl}_{2}\right)$, and fractionated. n-Butyl alcohol passed over first and when the volume was about 25 ml . much solid separated (presumably the addition compound $\mathrm{CaCl}_{2}, x \mathrm{Bu}^{\mathrm{n} O H}$). When this was cold, anhydrous ether was added, the solid filtered off, the ether removed, and the residue distilled; 8 g . of the n-butyl ester (a very pale yellow liquid) were collected at $193 \cdot 5-194 \cdot 5^{\circ} / 759 \mathrm{~mm}$. Redistillation gave a perfectly colourless liquid, b. p. $71^{\circ} / 6 \mathrm{~mm}$. (Found: C, $69 \cdot 8 ; \mathrm{H}, 9 \cdot 1 . \mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2}$ requires C, $70 \cdot 1 ; \mathrm{H}, 9 \cdot 2 \%$).

Esters of Dec-9-yne-1-carboxylic Acid.-Dec-9-yne-1-carboxylic acid. Undecylenic acid was purified through the methyl ester (preceding paper) and had a setting point of 23.5°; practically identical results were obtained with the redistilled acid, b. p. $152-154^{\circ} / 6 \mathrm{~mm}$., s. p. $22 \cdot 6-22 \cdot 8^{\circ}$. In a $1500-\mathrm{ml}$. three-necked flask, equipped with a double-surface condenser, a mercury-sealed mechanical stirrer, and a dropping-funnel, was placed a solution of 108 g . of purified undecylenic acid in 285 ml . of dry A.R. carbon tetrachloride. The solution was cooled in a bath of ice and salt and 96 g . of dry A.R. bromine were added during 1 hour. The product was allowed to attain room temperature, the solvent distilled off from a water-bath, and the residue transferred to a basin; after standing in the air for several days (or keeping in a vacuum desiccator over silica gel), it solidified completely. The yield of $9: 10$-dibromo-decane-1-carboxylic acid was quantitative.

The solid dibromo-acid was mixed with a solution of 263 g . of potassium hydroxide in 158 ml . of water in a 2 -l. round-bottomed flask equipped with a double-surface condenser, and the whole heated
in a bath at $150-160^{\circ}$ for 8 hours; foaming was reduced by addition of small quantities of crude sodium oleylsulphonate (" pentrone-T") from time to time. After the product had stood overnight, 1.5 l . of water were added, and the mixture was shaken until the solid had dissolved, acidified with dilute sulphuric acid to Congo-red, and set aside for 12 hours, whereupon a cake of acid separated on the surface. This was extracted with four $250-\mathrm{ml}$. portions of ether, the ether removed, and the residue distilled with a free flame. Two fractions were collected: (a) b. p. $177-182^{\circ} / 15 \mathrm{~mm}$., 52 g ., solidifying completely on cooling to a solid, m. p. 38-41 , and (b) b. p. $182-200^{\circ} / 15 \mathrm{~mm}$., 15 g ., solidifying on cooling to a somewhat sticky solid. Recrystallisation of (a) from A.R. light petroleum (b. p. $60-80^{\circ}$) yielded a first crop of 31 g . of acid, m. p. 42°; the filtrate was allowed to evaporate spontaneously, and the resulting sticky solid, after being spread on porous porcelain and recrystallised, gave a further 2 g . of acid, m. p. 42°. Fraction (b), after similar treatment afforded 3 g . of acid, m. p. 42°. Further recrystallisation did not alter the m. p .

In another experiment a mixture of 120 g . of the dibromo-acid and a solution of 140 g . of potassium hydroxide in 90 ml . of water, contained in a $2-1$. flask fitted with a reflux condenser, was heated in an oil-bath at 160° for 30 minutes; much foaming occurred. Upon working up as above, there were obtained : (a) 25 g ., b. p. $177-180^{\circ} / 17 \mathrm{~mm}$.; this solidified immediately on cooling (m. p. 40-42) and after recrystallisation from light petroleum (b. p. $40-60^{\circ}$) had m. p. 42° (16 g .) ; (b) $19 \mathrm{~g} ., \mathrm{b}$. p $180-210^{\circ} / 17 \mathrm{~mm}$., which set to a soft sticky mass on cooling and yielded only 1 g . of the acid, m. p. 42^{\perp} (Found: equiv., 184. Calc. for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2}$: equiv., 182).

Oxidation of the acetylenic acid of $m . p_{.} 42^{\circ}, ~ 2.00 \mathrm{G}$. of the acid were dissolved in 50 ml . of water containing 0.585 g . of A.R. anhydrous sodium carbonate, the solution was kept saturated with carbon dioxide, and $0 \cdot 1 \mathrm{~N}$-potassium permanganate solution was added slowly and with constant stirring until a slight excess was present after standing for 30 minutes (compare Perkin and Simonsen, J., 1907, 91, 828) : 1500 ml . were required and the addition occupied 3 hours. The solution was decolorised with sulphur dioxide and kept for 24 hours at room temperature. The acid was filtered off through a weighed Gooch crucible and dried to constant weight; its m. p. was 133°, unaffected by recrystallisation from acetone, and unaltered by admixture with pure sebacic acid, m. p. 133-134 ${ }^{\circ}$. The yield of sebacic acid was 1.45 g .; to this must be added the dissolved acid contained in 1550 ml . of solution. There can therefore be little doubt that the acid, m. p. 42°, is dec- 9 -yne-1-carboxylic acid.

Methyl ester. A mixture of 13 g . of the acetylenic acid, 80 g . of absolute methyl alcohol, and 10 g . of concentrated sulphuric acid was kept at room temperature for 14 days, poured into excess of water, and extracted with ether. The ethereal extract was washed with saturated sodium hydrogen carbonate solution and water, dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent removed. Distillation gave 12 g . of the pure wethyl ester, b. p. $121^{\circ} / 5 \mathrm{~mm}$. (Found : C, $72.9 ; \mathrm{H}, 10 \cdot 1$. $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $\mathrm{C}, 73 \cdot 4 ; \mathrm{H}, 10.0 \%$).

Ethyl ester. (1) A mixture of 15 g . of the acid, 9 g . of absolute ethyl alcohol, 1 ml . of concentrated sulphuric acid, and 25 ml . of sodium-dried A.R. benzene was refluxed for 38 hours and yielded, after being worked up in the usual manner, $12 \cdot 5 \mathrm{~g}$. of ester, b. p. $134 \cdot 5^{\circ} / 6 \cdot 5 \mathrm{~mm}$.
(2) A mixture of 10 g . of the acid, 50 g . of absolute ethyl alcohol, and 6 g . of concentrated sulphuric acid was kept at room temperature for 8 days and afforded, as for the methyl ester, 10 g . of ethyl ester of b. p. $142^{\circ} / 13 \mathrm{~mm}$.
n-Propyl ester. (1) A mixture of 10 g . of the acid, 80 g . of pure anhydrous n-propyl alcohol, and 6 g . of concentrated sulphuric acid was kept at room temperature for 20 days, poured into excess of water, and extracted with ether. The extract was purified as above, and the ether and the excess of alcohol were removed at atmospheric pressure. Further distillation gave 9 g . of the n -propyl ester, b. p. $142^{\circ} / 6 \mathrm{~mm}$. (Found: C, $75.0 ; \mathrm{H}, 10.7 . \mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}$ requires $\mathrm{C}, 75 \cdot 0 ; \mathrm{H}, 10 \cdot 8 \%$).
(2) A mixture of 12 g . of the acid, 10 g . of pure n-propyl alcohol, 3 g . of concentrated sulphuric acid, and 25 ml . of sodium-dried A.R. benzene was refluxed for 20 hours. After working up as usual, 12 g . of ester, b. p. $161-162^{\circ} / 13 \mathrm{~mm} ., 138^{\circ} / 5 \mathrm{~mm}$., were obtained; this had $d_{4^{2}}^{20^{\circ}} 0.9051, n_{\mathrm{D}}^{20^{\circ}} 1 \cdot 4457, R_{\mathrm{D}} 66.06$ ($M, 224 \cdot 33$), and was evidently not the desired product.

Reduction of ethyl ester : ethyl n -undecylate. 19.5 G . of the acetylenic ester were mixed with 25 ml . of absolute ethyl alcohol and reduced with hydrogen at atmospheric pressure in the presence of 0.3 g . of Adams's platinum oxide catalyst. 4470 Ml . of hydrogen were absorbed during 4.5 hours and no further absorption occurred during 5 hours; the theoretical absorption (765 mm . and 20°) is 4505 ml . plus 60 ml . for the reduction of the platinum oxide catalyst. The platinum was filtered off, the alcohol removed at atmospheric pressure and the ester distilled, whereby $18 \mathrm{~g} ., \mathrm{b} . \mathrm{p} .115 \cdot 5^{\circ} / 5 \mathrm{~mm}$., were obtained. The ester was slightly turbid; the turbidity was removed by dissolving in ether, washing with sodium hydrogen carbonate solution (there was no apparent reaction) and water, drying, and distilling: b. p. $118^{\circ} / 7 \mathrm{~mm}$. The physical properties agreed with those calculated from 0.5 (ethyl n-decoate + ethyl n-dodecoate) and from ethyl n-decoate $+\mathrm{CH}_{2}$ (Part XIII, this vol., p. 624; compare preceding paper).

Esters of Acetylenedicarboxylic Acid.-Acetylenedicarboxylic acid, prepared from pure fumaric acid as described in Org. Synth., 1938, 18, 17, 3, had m. p. $177-178^{\circ}$ (Ovg. Synth., loc. cit., gives m. p. 175-176 ${ }^{\circ}$; Moureu and Bongrand, Ann. Chim., 1920, 14, 9, give m. p. 178.5-179 ${ }^{\circ}$).

Dimethyl ester. (1) The following modification of Moureu and Bongrand's method (loc. cut.) was employed. In a 1-1. three-necked flask, provided with a thermometer, mechanical stirrer, and reflux condenser protected by a calcium chloride tube, was placed a cold mixture of 80 g . of pure anhydrous methyl alcohol and 40 g . of concentrated sulphuric acid : 20 g . of acetylenedicarboxylic acid were added, the mixture kept at room temperature for 66 hours and then, with stirring, at 50° for 58 hours. The mixture was poured into 120 ml . of saturated salt solution and extracted with five $80-\mathrm{ml}$. portions of ether: the combined extracts were washed with water, saturated sodium hydrogen carbonate solution (until colourless), and water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent removed on a water-bath. The residue upon distillation gave 13.7 g . of ester, b. p. $76.5^{\circ} / 3 \mathrm{~mm}$.
(2) A mixture of 20 g . of acid, 16 g . of absolute methyl alcohol, 40 ml . of sodium-dried A.R. benzene, and 7 g . of concentrated sulphuric acid was refluxed for 5 hours, poured into 120 ml . of saturated salt solution, the benzene layer separated, and the aqueous phase extracted with three $150-\mathrm{ml}$. portions of ether. The combined extracts were worked up as in (1), the ether was removed on a water-bath and the
benzene under reduced pressure (water-pump), and the residue distilled (oil-pump); $\mathbf{1 5 . 5 \mathrm { g } \text { . of ester, }}$ b. p. $78 \cdot 5^{\circ} / 4 \mathrm{~mm}$., were obtained.

Diethyl ester. A mixture of 20 g . of the acid, 23 g . of absolute ethyl alcohol, 60 ml . of dry benzene, and 4 ml . of concentrated sulphuric acid was refluxed for 12 hours and yielded, as for the methyl ester, 20.5 g . of the ester, b. p. $85 \cdot 5^{\circ} / 2.5 \mathrm{~mm}$.

Di-n-propyl ester. A mixture of 20 g . of the acid, 30 g . of anhydrous n-propyl alcohol, 5 ml . of concentrated sulphuric acid, and 80 ml . of dry benzene was refluxed for 12.5 hours and yielded 24.9 g . of the $d i$-n-propyl ester, b. p. $116^{\circ} / 5 \mathrm{~mm}$. (Found: C, $60 \cdot 5 ; \mathrm{H}, 7 \cdot 1 . \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4}$ requires C, $60 \cdot 6 ; \mathrm{H}, 7 \cdot 1 \%$).

Diisopropyl ester. The same procedure (same quantities, 10 hours' refluxing) afforded 21.6 g . of ester, b. p. $96^{\circ} / 3 \mathrm{~mm}$.

Di-n-butyl ester. A mixture of 15 g . of acid, 27 g . of absolute n-butyl alcohol, 70 ml . of dry benzene, and 5 ml . of concentrated sulphuric acid was refluxed for 19 hours and yielded, after two distillations. 15.5 g . of the n -butyl ester, b. p. $139^{\circ} / 5 \mathrm{~mm}$. (Found: C, $63.6 ; \mathrm{H}, 8.2 . \mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{4}$ requires $\mathrm{C}, 63.7$; H, 8.0%).

Di-n-amyl ester. A mixture of 20 g . of acid, 60 g . of n-amyl alcohol (Sharples, b. p. $136 \cdot 5-137 \cdot 5^{\circ} / 765 \mathrm{~mm}$.), 150 ml . of dry benzene, and 8 ml . of concentrated sulphuric acid was refluxed for 18 hours and yielded, after two distillations, 26.0 g . of the $\mathrm{n}-\mathrm{amyl}$ ester, b. p. $143^{\circ} / 1.5 \mathrm{~mm}$. (Found : $\mathrm{C}, 66.0 ; \mathrm{H}, 8.9 . \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{4}$ requires $\mathrm{C}, 66.1 ; \mathrm{H}, 8.7 \%$).

Disoamyl ester. ${ }^{1 s o}$ isutylcarbinol (Sharples, b. p. $129-130^{\circ} / 763 \mathrm{~mm}$.), under exactly the same conditions (but 24 hours' refluxing), gave 28.5 g . of the isoamyl ester, b. p. $133^{\circ} / 2.5 \mathrm{~mm}$. (Found : $\mathrm{C}, 66 \cdot 1 ; \mathrm{H}, 8.7 . \quad \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{4}$ requires $\mathrm{C}, 66 \cdot 1 ; \mathrm{H}, 8 \cdot 7 \%$).

Esters of Phenylpropiolic Acid.--Phenylpropiolic acid, prepared according to Org. Synth., 1932, 12, 60 , and recrystallised from A.R. carbon tetrachloride, had m. p. $134-135^{\circ}$.

Ethyl ester. A mixture of 120 g . of absolute ethyl alcohol and 9 g . of concentrated sulphuric acid was treated with 20 g . of phenylpropiolic acid, kept at room temperature for 7 days, poured into water, and the separated oil extracted with ether. The extract was washed successively with water, saturated sodium hydrogen carbonate solution, and water, dried, and the solvent removed. Distillation gave 18 g . of the ester, b. p. $124^{\circ} / 6 \mathrm{~mm}$. Attempts to prepare the ester from silver phenylpropiolate and ethyl iodide in benzene solution were unsuccessful.
n-Propyl ester. A solution of 10 g . of concentrated sulphuric acid in 156 g . of absolute n-propyl alcohol was treated with 20 g . of phenylpropiolic acid and kept for 14 days at room temperature. After the same procedure as for the ethyl ester, the ether and excess of n-propyl alcohol were removed by heating in a bath to $130-140^{\circ}$. The residue, after two distillations, gave 17 g . of the n-propyl ester, b. p. $143^{\circ} / 7 \mathrm{~mm}$. (Found: C, $76 \cdot 4 ; \mathrm{H}, 6 \cdot 4 . \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{4}$ requires $\mathrm{C}, 76 \cdot 6 ; \mathrm{H}, 6.4 \%$).
n-Butyl ester. To a cold solution of 13 g . of concentrated sulphuric acid in 195 g . of absolute n-butyl alcohol were added 20 g . of phenylpropiolic acid, and the mixture kept for 28 days at room temperature. This yielded, when worked up as for the n-propyl ester, 10 g . of the n -butyl ester, b. p. $149^{\circ} / 5 \mathrm{~mm}$. (Found : $\mathrm{C}, 76 \cdot 9 ; \mathrm{H}, 7 \cdot 1 . \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{C}, 77 \cdot 2 ; \mathrm{H}, 7 \cdot 0 \%$).

Cyanides.-Methyl cyanide. 80 G. of pure acetamide (b. p. $219^{\circ} / 762 \mathrm{~mm}$. m. p. $80-81 .^{\circ}$) were heated with 140 g . of phosphoric oxide and yielded, in the usual manner, 38 g . of methyl cyanide, b. p. $81^{\circ} / 757 \mathrm{~mm}$.

Ethyl cyanide. The following procedure is based upon that given by Adams and Marvel (" Organic Chemical Reagents'", 1921, II1, 47; University of Illinois, 1921) (compare Walden, Ber., 1907, 40, 3215). In a $500-\mathrm{ml}$. three-necked flask, nounted on a wire gauze and equipped with a dropping funnel. mechanical stirrer, and wide-bored " knee-tube" attached to a double-surface condenser set for downward distillation, was placed a solution of 118 g . of sodium cyanide in 150 ml . of water. 192 G . of commercial ethyl sulphate were added to the boiling mixture at about the same rate as the liquid distilled; the addition was complete in 1 hour, 50 ml . of water were added, and the residual ethyl cyanide boiled out. The upper layer in the distillate was separated; the aqueous phase was saturated with calciun chloride, cooled in ice, and the small quantity of cyanide removed. To destroy the isocyanide present, the product was shaken twice for 5 minutes with $5-\mathrm{ml}$. portions of concentrated hydrochloric acid; it was then washed with saturated potassium carbonate solution, shaken with calcium chloride solution, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The crude ethyl cyanide (62 g .) was fractionated and yielded 21 g ., b. p. $96.5-98.5^{\circ} / 760 \mathrm{~mm}$. ; the low b. p. fraction (ca. 20 g .) was again dried (NaSO_{4}) and redistilled to give $10 \mathrm{~g} ., \mathrm{b}$. p. $55-96^{\circ}$ (a liquid with a pungent odour, which was not further investigated), and 10 g ., b. p. 96-98. Upon redistillation, the ethyl cyanide boiled constantly at $\mathbf{9 7 . 5 ^ { \circ }} / \mathbf{7 6 5} \mathrm{mm}$. Attempts to prepare ethyl cyanide from aqueous methyl-alcoholic sodium cyanide and ethyl bromide gave unsatisfactory results.
n -Propyl cyanide. To a solution of 60 g . of sodium cyanide in 80 ml . of water contained in a 1-1. round-loottomed flask was added a solution of 124 g . of n-propyl bromide in 260 ml . of methyl alcohol. The inixture was refluxed for 39 hours, the liquid decanted into another flask, and the residual solid washed with 50 ml . of methyl alcohol. The methyl alcohol was removed by careful fractionation through a 3 -section, Pyrex Young and Thomas column from a water-bath; further fractionation from an air-bath gave two fractions, b. p. $70-90^{\circ}$ and $90-102^{\circ}$. Each was saturated with calcium chloride, the upper layers removed, combined, and shaken successively with a few mI. of concentrated hydrochloric acid (to remove isocyanide), sodium hydrogen carbonate solution, calcium chloride solution, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Fractionation of the dry crude product (25 g .) afforded 19 g . of n-propyl cyanide, b. p. $117.8-118.8^{\circ} / 758 \mathrm{~mm}$. Redistillation gave the pure compound, b. p. $118^{\circ} / 757 \mathrm{~mm}$.
n-Butyl cyanide. The following modification of Adams and Marvel's method (J. Amer. Chem. Soc., $1920,42,311$) was employed. To a warm solution (steam-bath) of 195 g . of sodium cyanide in 250 ml . of water contained in a $3-1$. round-bottomed flask was added a solution of 450 g . of n-butyl bromide in 575 ml . of methyl alcohol. The mixture was refluxed for 30 hours and, when cold, filtered through a sintered-glass funnel, and the solid washed with 200 ml . of methyl alcohol. The combined filtrate and washings were distilled from a 2-1. flask and three-section, Young and Thomas column mounted on a water-bath; the temperature of the vapours did not rise above 68-69 . One litre of water was added
to the residue in the flask, the latter fitted with a " knee-tube" attached to a downward condenser, and the liquid distilled until oil ceased to pass over. The water in the distillate was discarded, and the crude cyanide (200 g .) washed twice with half its volume of concentrated hydrochloric acid (to remove isocyanides), then with saturated sodium hydrogen carbonate solution, and dried with (MgSO_{4}). Distillation gave the pure cyanide, b. p. $141^{\circ} / 764 \mathrm{~mm}$.
n -Amyl cyanide. A solution of 30 g . of sodium cyanide in 40 ml . of water was mixed with a solution of 100 g . of n-amyl iodide in 125 ml . of methyl alcohol, and the whole refluxed for 30 hours : no solid separated. The crude cyanide, isolated as for n-butyl cyanide, weighed 39 g . It boiled constantly at $162^{\circ} / 777 \mathrm{~mm}$.
iso Amyl cyanide. This was prepared by refluxing a mixture of 30 g . of sodium cyanide in 40 ml . of water and 77 g . of isoamyl bromide (ex Sharples's synthetic alcohol) in 150 ml . of methyl alcohol for 27 hours. The yield, b. p. $153.5^{\circ} / 756 \mathrm{~mm}$., was 25 g .
n -Hexyl cyanide. This was prepared by refluxing a mixture of 30 g . of sodium cyanide in 40 ml . of water and a solution of 82 g . of n-hexyl bromide in 150 ml . of methyl alcohol for 21 hours. The cyanide was isolated as detailed for n-butyl cyanide except that it was preferable to separate the crude cyanide layer from the diluted reaction product after the methyl alcohol had been removed by careful fractionation: steam distillation was rather slow. The yield of n-hexyl cyanide, b. p. $182-182 \cdot 5^{\circ} / 757 \mathrm{~mm}$., was 40 g .

Allyl cyanide. A large-scale preparation, b. p. $116-121^{\circ} / 754 \mathrm{~mm}$. (preceding paper), was carefully fractionated, and a large middle fraction, b. p. $118.5^{\circ} / 753 \mathrm{~mm}$., was employed in the physical measurements.

Trimethylene dicyanide. This was prepared from the dibromide, b. p. $164-165 \cdot 5^{\circ} / \mathbf{7 5 9} \mathrm{mm}$., as detailed in Org. Synth., Coll. Vol. I, 1941, 536 , and boiled at $140^{\circ} / 8 \mathrm{~mm}$.

Phenyl cyanide. 45 G . of benzamide, $\mathrm{m} . \mathrm{p} .128^{\circ}$, were mixed with 75 g . of phosphoric oxide in a $250-\mathrm{ml}$. Claisen flask, arranged for distillation under diminished pressure (ca. 100 mm .). The flask was heated with a free flame and the cyanide (32 g .) passed over at $126-130^{\circ} / 100 \mathrm{~mm}$. The product was washed with potassium carbonate solution, dried, and distilled : the phenyl cyanide boiled constantly at $189^{\circ} / 758 \mathrm{~mm}$.

Benzyl cyanide. This was prepared by refluxing a mixture of a solution of 30 g . of sodium cyanide in 40 ml . of water and a solution of 63 g . of redistilled benzyl chloride in 125 ml . of methyl alcohol for 30 hours. The cyanide was isolated as detailed for n-butyl cyanide except that it was necessary to separate the benzyl cyanide from the steam distillate by ether extraction. The yield was 40 g ., b. p. $108.5^{\circ} / 15 \mathrm{~mm}$.

Physical Measurements.-390. Methyl but-3-yne-1-carboxylate. B. p. $146.5^{\circ} / 754 \mathrm{~mm}$; $M_{120} 112 \cdot 12$; $n_{\mathrm{C}} 1 \cdot 42670, n_{\mathrm{D}} 1 \cdot 42917, n_{\mathrm{F}} 1 \cdot 43526, n_{\mathrm{G}^{\prime}} 1 \cdot 43979 ; R_{\mathrm{C}} 29 \cdot 17, R_{\mathrm{D}} 29 \cdot 32, R_{\mathrm{F}} 29 \cdot 69, R_{\mathrm{G}^{\circ}} 29 \cdot 95 ; ~ M n_{\mathrm{D}}^{20^{\circ}} 160 \cdot 24$. Densities determined : $d_{4^{20}}^{20^{\circ}} 0.9861, d_{4^{1}}^{4 \cdot} \cdot 8^{\circ} 0.9641, d_{4}^{61 \cdot} 0^{\circ} 0.9450, d_{4}^{86 \cdot 1^{\circ}} 0.9186$. Apparatus D.
(These headings apply to corresponding columns of all subsequent tables.)

t.	H.	$d^{\text {to }}$.	γ.	P.	t.	H.	$d_{4}^{t^{\circ}}$.	γ.	P.
$15.3{ }^{\circ}$	13.68	0.9908	$33 \cdot 47$	$272 \cdot 2$	$63 .{ }^{\circ}$	11.82	0.9427	27.52	$272 \cdot 4$
$19 \cdot 4$	13.59	0.9867	$33 \cdot 12$	$272 \cdot 6$	$86 \cdot 2$	$10 \cdot 85$	$0 \cdot 9185$	24.61	271.9
$42 \cdot 6$	$12 \cdot 61$	0.9633	$30 \cdot 00$	$272 \cdot 4$					$272 \cdot 3$

391. Ethyl but-3-yne-1-carboxylate. B. p. $159^{\circ} / 763 \mathrm{~mm}$.; $M 126 \cdot 15$; $n_{\mathrm{C}} 1.42563, n_{\mathrm{D}} 1 \cdot 42803, n_{\mathrm{F}}$ $1.43403, n_{G^{\prime}} 1 \cdot 43849 ; R_{\mathrm{C}} 33 \cdot 88, R_{\mathrm{D}} 34 \cdot 05, R_{\mathrm{F}} 34 \cdot 46, R_{\mathrm{G}^{\prime}} 34 \cdot 78 ; M n_{\mathrm{D}}^{20^{\circ}} 180 \cdot 14$. Densities determined : $d_{4}^{20} 0^{\circ} 0.9532, d_{4^{\circ}}^{41 \cdot 0^{\circ}} 0.9328, d_{4}^{61 \cdot 0^{\circ}} 0.9126, d_{44^{8 .}}^{85} 0.8879$. Apparatus A.

$17 \cdot 4^{\circ}$	$17 \cdot 15$	0.9558	30.69	310.7	$61 \cdot 4^{\circ}$	14.99	0.9122	$25 \cdot 60$	$311 \cdot 1$
$21 \cdot 4$	$17 \cdot 04$	0.9518	30.37	$311 \cdot 1$	87.8	13.69	0.8851	$22 \cdot 69$	$311 \cdot 1$
41.4	15.97	0.9324	27.88	$310 \cdot 9$				Mean	311.0

[Perkin and Simonsen, loc. cit., give b. p. $160-161^{\circ} / 765 \mathrm{~mm}$., $d_{4^{\circ}}^{16 \cdot 7^{\circ}} 0.95585, n_{\mathrm{C}}^{16.7^{\circ}} 1 \cdot 42673, n_{\mathrm{F}}^{16 .-0} 1 \cdot 43516$, $n_{G^{16}}^{16 \cdot 7^{\circ}} \quad 1 \cdot 44001$.]
392. n-Propyl but-3-yne-1-carboxylate. B. p. $174 \cdot 5-175 \cdot 5^{\circ} / 763 \mathrm{~mm}$.; $M 140 \cdot 18 ; n_{\mathrm{C}} 1 \cdot 42714$, $n_{\mathrm{D}} 1 \cdot 42952, n_{\mathrm{G}} 1.43542, n_{\mathrm{G}^{\prime}} 1.43975 ; R_{\mathrm{G}} 38 \cdot 50, R_{\mathrm{D}} 38.69, R_{\mathrm{F}} 39 \cdot 15, R_{\mathrm{G}^{\prime}} 39 \cdot 49 ; M n_{\mathrm{D}}^{20^{\circ}} 200 \cdot 39$. Densities

14.1°	$13 \cdot 13$	$0 \cdot 9409$	$30 \cdot 51$	$350 \cdot 1$	$40 \cdot{ }^{\circ}$	$12 \cdot 19$	0.9149	$27 \cdot 54$	$351 \cdot 0$
$18 \cdot 4$	$13 \cdot 01$	$0 \cdot 9367$	$30 \cdot 10$	$350 \cdot 5$	$61 \cdot 3$	11.44	$0 \cdot 8946$	$25 \cdot 27$	$351 \cdot 3$
$22 \cdot 3$	12.89	$0 \cdot 9328$	$29 \cdot 69$	$350 \cdot 8$	$85 \cdot 9$	$10 \cdot 57$	$0 \cdot 8707$	22.73	$351 \cdot 5$
									. $350 \cdot 9$

393. $\mathrm{n}-$ Butyl but-3-yne-1-carboxylate. B. p. $193.5-194 \cdot 5^{\circ} / 759 \mathrm{~mm}$. and $71^{\circ} / 6 \mathrm{~mm}$.; $M^{0} 154 \cdot 20$; $n_{\mathrm{O}} 1.42980, n_{\mathrm{D}} 1 \cdot 43219, n_{\mathrm{F}} 1 \cdot 43807, n_{\mathrm{G}^{4}} 1 \cdot 44244 ; R_{\mathrm{C}} 43 \cdot 10, R_{\mathrm{D}} 43.31, R_{\mathrm{F}} 43 \cdot 82, R_{G^{\prime}} 44 \cdot 19 ; M n_{\mathrm{D}}^{20^{\circ}} 220 \cdot 85$.

$22 \cdot 1^{\circ}$	12.86	0.9220	29.28	$389 \cdot 1$	63.0°	$11 \cdot 48$	0.8846	$25 \cdot 08$	$390 \cdot 1$
$27 \cdot 3$	12.67	0.9172	28.70	$389 \cdot 1$	$85 \cdot 6$	10.72	0.8638	22.87	$390 \cdot 4$
$41 \cdot 3$	12.15	0.9054	27.17	388.8				Mean 389.5	

394. Methyl dec-9-yne-1-carboxylate. B. p. $121^{\circ} / 5 \mathrm{~mm}$.; $M 196.28 ; n_{\mathrm{C}} 1.44403, n_{\mathrm{D}} 1.44646, n_{\mathrm{F}}$ $1.45242, n_{\mathrm{G}^{\prime}} 1.45688 ; R_{\mathrm{O}} 56.81, R_{\mathrm{D}} 57.09, R_{\mathrm{F}} 57.75, R_{\mathrm{G}} .58 .24 ; M n_{\mathrm{D}}^{20^{\circ}} 283.92$. Densities determined: $d_{4}^{20^{\circ}} 0.9177, d_{4}^{40.0^{\circ}} 0.9020, d_{4}^{62.0^{\circ}} 0.8845, d_{4}^{84.3^{\circ}} 0.8665$. Apparatus D.

t.	H.	$d_{4}^{t^{\circ}}$.	γ.	P.	t.	H.	$d_{4}{ }^{\text {º}}$.	γ	P.
$17 \cdot 0^{\circ}$	14.72	0.9201	$33 \cdot 45$	$513 \cdot 0$	61.5°	$13 \cdot 16$	0.8849	$28 \cdot 76$	$513 \cdot 7$
$20 \cdot 0$	14.60	0.9177	33.09	$513 \cdot 0$	$86 \cdot 7$	$12 \cdot 27$	$0 \cdot 8646$	$26 \cdot 20$	$513 \cdot 6$
41.9	$13 \cdot 85$	0.9003	30•79	$513 \cdot 6$					$513 \cdot 4$

395. Ethyl dec-9-yne-1-carboxylate. B. p. $134 \cdot 5^{\circ} / 6 \cdot 5 \mathrm{~mm} . ; \quad M 210 \cdot 31$; $n_{\mathrm{O}} 1 \cdot 44232, n_{\mathrm{D}} 1 \cdot 44475$, $n_{\mathrm{F}^{\prime}} 1.45061, n_{\mathrm{G}^{\prime}} 1.45505 ; R_{\mathrm{C}} 61 \cdot 42, R_{\mathrm{D}} 61 \cdot 72, R_{\mathrm{F}} 62 \cdot 41, R_{\mathrm{G}^{\prime}} 62.95 ; M n_{\mathrm{D}}^{20^{\circ}} 303.86$. Densities determined : $d_{4}^{20^{\circ}} 0.9066, d_{4}^{4} \cdot 6^{\circ} 0.8897, d_{4}^{66 \cdot 9^{\circ}} 0.8734, d_{4}^{87 . \cdot^{\circ}} 0.8534$. Apparatus D.

$12 \cdot 3^{\circ}$	14.56	0.9123	32.80	551.7	61.9°	12.77	0.8734	27.54	551.6
$20 \cdot 5$	$14 \cdot 28$	0.9062	31.96	551.8	$88 \cdot 6$	11.89	0.8522	$25 \cdot 02$	552.0
$42 \cdot 2$	13.49	0.8892	29.62	551.8				Mean 551.8	

The ester prepared by the cold esterification process had b. p. $142^{\circ} / 13 \mathrm{~mm} ., d_{4{ }^{\circ}}^{20{ }^{\circ}} 0.9069, n_{40^{\circ}}^{20} 1.44480$.
396. n-Propyl dec-9-yne-1-carboxylate. B. p. $142^{\circ} / 6 \mathrm{~mm} . ; \quad M 224 \cdot 33$; $n_{\mathrm{C}} 1 \cdot 44343, n_{\mathrm{D}} 1 \cdot 44586$, $n_{\mathrm{F}} 1 \cdot 45175, n_{\mathrm{G}^{\prime}} 1 \cdot 45618 ; R_{\mathrm{C}} 66 \cdot 09, R_{\mathrm{D}} 66 \cdot 41, R_{\mathrm{F}} 67 \cdot 17, R_{\mathrm{G}^{\prime}} \cdot 67 \cdot 74 ; M n_{\mathrm{D}}^{20^{\circ}} 324 \cdot 36$. Densities determined:

$19 \cdot 2^{\circ}$	$14 \cdot 30$	0.9012	$31 \cdot 83$	$591 \cdot 2$	$41 \cdot 7^{\circ}$	$13 \cdot 60$	0.8840	$29 \cdot 69$	$591 \cdot 0$
$20 \cdot 3$	$14 \cdot 25$	0.9004	31.69	$591 \cdot 1$	$61 \cdot 0$	$12 \cdot 93$	0.8697	$27 \cdot 77$	$592 \cdot 1$
29.5	$13 \cdot 98$	0.8934	30.84	$591 \cdot 7$	$87 \cdot 2$	$12 \cdot 08$	0.8496	$25 \cdot 35$	$592 \cdot 4$
								Mean $591 \cdot 6$	

39\%. Ethyl n-undecylate. B. p. $118^{\circ} / 7 \mathrm{~mm} . ; M 214.34 ; n_{\mathrm{C}} 1.42630, n_{\mathrm{D}} 1.42847, n_{\mathrm{F}} 1.43376, n_{\mathrm{G}}$ $1.43760 ; R_{\mathrm{C}} 63 \cdot 65, R_{\mathrm{D}} 63 \cdot 94, R_{\mathrm{F}} 64 \cdot 63, R_{\mathrm{G}^{\prime}} 65 \cdot 12$; $M n^{20^{\circ}} 306 \cdot 18$. Densities determined : $d_{4}^{20{ }^{\circ}} 0.8633$, $d_{4^{\circ}}^{41 \cdot 2^{\circ}} 0.8476, d_{4^{\circ}}^{61.7^{\circ}} 0.8319, d_{4^{6}}^{8 \cdot \cdot 3^{\circ}} 0.8123$. Apparatus A.

$16 \cdot 8^{\circ}$	$17 \cdot 65$	$0 \cdot 8658$	$28 \cdot 61$	$572 \cdot 6$	$61 \cdot 3^{\circ}$	$15 \cdot 75$	$0 \cdot 8322$	$24 \cdot 54$
$20 \cdot 7$	$17 \cdot 48$	$0 \cdot 8628$	$28 \cdot 24$	$572 \cdot 7$	$86 \cdot 4$	$14 \cdot 72$	$0 \cdot 8122$	$22 \cdot 39$
$42 \cdot 4$	$16 \cdot 68$	$0 \cdot 8467$	$26 \cdot 45$	$573 \cdot 9$			$574 \cdot 3$	

398. Dimethyl acetylenedicarboxylate. B. p. $76.5^{\circ} / 3 \mathrm{~mm} . ; \quad M 142.11 ; n_{\mathrm{C}} 1.44389, n_{\mathrm{D}} 1.44681$, $n_{\mathrm{F}} 1 \cdot 45483, n_{\mathrm{G}^{\prime}} 1 \cdot 46094 ; R_{\mathrm{C}} 32 \cdot 53, R_{\mathrm{D}} 32 \cdot 72, R_{\mathrm{F}} 33 \cdot 22, R_{\mathrm{G}^{\prime}} 33 \cdot 61 ; M n_{\mathrm{D}}^{20^{\circ}} 205 \cdot 60$. Densities determined :

$15.1{ }^{\circ}$	17.63	1-1657	38.48	$303 \cdot 6$	61.3°	15.72	$1 \cdot 1141$	$32 \cdot 80$	305.2
$26 \cdot 9$	$17 \cdot 25$	1-1522	$37 \cdot 22$	$304 \cdot 6$	87-1	14.71	$1 \cdot 0832$	29.84	$306 \cdot 8$
$41 \cdot 7$	16.56	$1 \cdot 1347$	35-19	305.0					305

Dimethyl acetylenedicarboxylate, prepared by the acid. $\mathrm{MeOH}, \mathrm{C}_{6} \mathrm{H}_{6}$, concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ method. had b. p. $78 \cdot 5^{\circ} / 4 \mathrm{~mm}$., $d_{4^{\circ}}^{20^{\circ}} 1 \cdot 1606, n_{\mathrm{C}} 1 \cdot 44380, n_{\mathrm{D}} 1 \cdot 44701, n_{\mathrm{F}} 1 \cdot 45498$, $n_{G^{\prime}} 1 \cdot 46119 ; R_{\mathrm{C}} 32.51, R_{\mathrm{D}} 32 \cdot 71$, $R_{\mathrm{F}} 33 \cdot 22, R_{G^{\prime}} 33 \cdot 61$; $M n_{\mathrm{D}}^{20^{\circ}} 205 \cdot 63$.
399. Diethyl acetylenedicarboxylate. B. p. $85 \cdot 5^{\circ} / 2 \cdot 5 \mathrm{~mm} . ; \quad M 170 \cdot 16 ; n_{\mathrm{G}} \cdot 1 \cdot 43944, n_{\mathrm{D}} 1 \cdot 44245, n_{\mathrm{F}}$ $1.44989, n_{G^{\prime}} 1.45573 ; R_{\mathrm{C}} 41 \cdot 96, R_{\mathrm{D}} 42 \cdot 22, R_{\mathrm{F}} 42 \cdot 83, R_{\mathrm{G}^{\prime}} 43 \cdot 31 ; M n_{\mathrm{D}}^{20^{\circ}} 245 \cdot 46$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 1 \cdot 0675, d_{4^{4}}^{41 \cdot 4^{\circ}} 1 \cdot 0459, d_{40^{6}}^{60 \cdot 4^{\circ}} 1 \cdot 0265, d_{40^{8.9}}{ }^{8 .} 1 \cdot 0009$. Apparatus D.

14.3°	12.79	1.0732	33.90	382.6	61.5°	11.44	1.0254	28.97	385.0
21.7	12.62	1.0658	33.22	383.3	86.9	10.72	0.9999	$26 \cdot 47$	386.0
41.9	11.98	1.0454	30.93	383.9				Mean	384.1

400. Di-n-propyl acetylenedicarboxylate. B. p. $116^{\circ} / 5 \mathrm{~mm} . ; \quad M 198 \cdot 21 ; n_{\mathrm{C}} 1 \cdot 44329, n_{\mathrm{D}} 1 \cdot 44621$, $n_{\mathrm{F}} 1 \cdot 45344, n_{\mathrm{G}^{\prime}} 1 \cdot 45909 ; R_{\mathrm{C}} 51 \cdot 26, R_{\mathrm{D}} 51 \cdot 56, R_{\mathrm{F}} 52 \cdot 28, R_{\mathrm{G}^{\prime}} 52 \cdot 84 ; \mathrm{Mn}_{\mathrm{D}}^{20^{\circ}} 286 \cdot 65$. Densities determined: $d_{4^{\circ}}^{50^{\circ}} 1 \cdot 0256, d_{4^{4}}^{40} 8^{\circ} 1 \cdot 0068, d_{4^{\circ}}^{62 \cdot 1^{\circ}} 0.9875, d_{4^{5}}^{85} \cdot 8^{\circ} 0.9646$. Apparatus D.

$18 \cdot 1^{\circ}$	$12 \cdot 78$	$1 \cdot 0273$	$32 \cdot 42$	$460 \cdot 4$	$61 \cdot 7^{\circ}$	$11 \cdot 56$	0.9879	$28 \cdot 20$	$462 \cdot 4$
$25 \cdot 3$	$12 \cdot 60$	1.0208	$31 \cdot 76$	$461 \cdot 0$	$87 \cdot 4$	10.84	0.9631	$25 \cdot 78$	$463 \cdot 8$
$41 \cdot 3$	$12 \cdot 16$	$1 \cdot 0063$	29.94	$460 \cdot 8$				Mean	$461 \cdot 6$

401. Diisopropyl acetylenedicarboxylate. B. p. $96^{\circ} / 3 \mathrm{~mm} . ; M 198 \cdot 21 ; n_{\mathrm{C}} 1 \cdot 43621, n_{\mathrm{D}} 1 \cdot 43908, n_{\mathrm{F}}$ $1.44623, n_{\mathrm{G}^{\prime}} 1.45179 ; R_{\mathrm{O}} 51.38, R_{\mathrm{D}} 51 \cdot 68, R_{\mathrm{F}} 52 \cdot 41, R_{\mathrm{G}^{\prime}} 52 \cdot 97 ; M n_{\mathrm{D}}^{20^{\circ}} 285 \cdot 24$. Densities determined :

$20 \cdot 3^{\circ}$	12.26	1.0087	30.54	$461 \cdot 9$	$61 \cdot 5^{\circ}$	$11 \cdot 18$	0.9725	26.85	$464 \cdot 0$
$27 \cdot 4$	12.13	1.0015	30.00	$463 \cdot 2$	87.5	10.39	0.9488	24.35	$464 \cdot 0$
$42 \cdot 3$	11.74	0.9897	28.72	$463 \cdot 6$				Mean 463.3	

402. Di-n-butyl acetylenedicarboxylate. B. p. $139^{\circ} / 5 \mathrm{~mm}$.; $M 226.28$; $n_{\mathrm{C}} 1 \cdot 44579, n_{\mathrm{D}} 1.44861$, $n_{\mathrm{C}} \mathrm{l} \cdot 45565, n_{\mathrm{G}^{\prime}} 1.46106 ; R_{\mathrm{C}} 60 \cdot 36, R_{\mathrm{D}} 60.69, \mathrm{R}_{\mathrm{F}} 61 \cdot 52, R_{\mathrm{G}^{\prime}} 62 \cdot 15 ; n_{\mathrm{D}}^{20^{\circ}} 327.79$. Densities determined: $d_{4^{2} 0^{\circ}}{ }^{\circ} 0.9993, d_{4^{4}}^{41.4^{\circ}} 0.9820, d_{4^{6}}^{6.11^{\circ}} 0.9625, d_{4^{8}}^{85} 7^{\circ} 0.9431$. Apparatus D.

16.0°	12.95	1.0027	32.07	537.0	$61 \cdot 4^{\circ}$	11.76	0.9639	27.99	540.0
30.3	12.58	0.9906	30.78	538.0	85.6	11.08	0.9432	25.81	540.7
41.0	12.31	0.9823	29.86	$538 \cdot 5$				Mean	538.8

403. Di-n-amyl acetylenedicarboxylate. B. p. $143^{\circ} / 1.5 \mathrm{~mm}$.; $M 254.32 ; n_{\mathrm{C}} 1 \cdot 44858, n_{\mathrm{D}} 1 \cdot 45137$, $n_{\mathrm{F}} 1 \cdot 45826, n_{\mathcal{G}^{\circ}} 1.46353 ; R_{\mathrm{G}^{\circ}} 69 \cdot 70, R_{\mathrm{D}} 70 \cdot 08, R_{\mathrm{F}} 71 \cdot 00, R_{\mathbf{G}^{\prime}} 71 \cdot 69 ; M n_{\mathrm{D}}^{20^{\circ}} 369 \cdot 12$. Densities determined : $d_{4}^{20} 0^{\circ} 0.9779, d_{4}^{4.8^{\circ}} 0.9619, d_{4}^{6 \cdot 5^{\circ}} 0.9453, d_{4}^{85.7^{\circ}} 0.9256$. Apparatus A.

t.	H.	$d_{4}^{\text {to }}$.	γ.	P.	t.	H.	$d_{4}^{t^{\circ}}$.	γ	ρ
$18 \cdot 3^{\circ}$	$17 \cdot 16$	0.9788	31.45	$615 \cdot 3$	$61.1{ }^{\circ}$	$15 \cdot 79$	0.9464	$27 \cdot 98$	$618 \cdot 1$
$27 \cdot 2$	17.01	0.9723	30.97	$617 \cdot 1$	$86 \cdot 1$	14.92	0.9252	$25 \cdot 85$	$619 \cdot 8$
$42 \cdot 0$	$16 \cdot 36$	0.9610	$29 \cdot 44$	616.4					$617 \cdot 7$

404. Disoamyl acetylenedicarboxylate. B. p. $133^{\circ} / 2.5 \mathrm{~mm}$; $M 254 \cdot 32 ; n_{\mathrm{C}} 1 \cdot 44842, n_{\mathrm{D}} 1 \cdot 45132$, $n_{\mathrm{F}} \mathrm{I} \cdot 45825, n_{\mathrm{G}^{\prime}} 1 \cdot 46359 ; R_{\mathrm{G}} 69 \cdot 59, R_{\mathrm{D}} 69.98, R_{\mathrm{F}} 70 \cdot 91, R_{\mathrm{G}^{\prime}} 71 \cdot 62 ; M n_{\mathrm{D}}^{20^{\circ}} 369 \cdot 09$. Densities determined : $d_{4^{\circ}}^{20} 0.9791, d_{4}^{41} \cdot 4^{\circ} 0.9623, d_{4}^{61 \cdot 6^{\circ}} 0.9454, d_{4^{\circ} \cdot 5^{\circ}}^{86} 0.9247$. Apparatus D.

$25 \cdot 3^{\circ}$	12.57	0.9749	30.26	611.9	$62 \cdot 2^{\circ}$	11.61	0.9449	27.09	614.0
41.8	1.2 .14	0.9620	28.84	612.6	86.4	10.98	0.9248	$25 \cdot 08$	$615 \cdot 4$
								Meanl	613.5

405. Ithyl phenylpropiolate. B. p. $124^{\circ} / 6 \mathrm{~mm} . ; n_{\mathrm{C}} 1.54582, n_{\mathrm{D}} 1.55231, n_{\mathrm{F}} 1.56962, n_{\mathrm{G}^{\prime}} 1 \cdot 58458$; $R_{\mathrm{C}} 52 \cdot 20, R_{\mathrm{D}} 52 \cdot 71, R_{\mathrm{F}} 54 \cdot 07, R_{\mathrm{G}^{\circ}} 55 \cdot 24 ; M n_{\mathrm{D}}^{20} 270 \cdot 40$. Densities determined : $\tilde{d}_{4}^{200}{ }^{200} 1 \cdot 0563, d_{4^{\circ}}^{41 \cdot 1^{\circ}} 1 \cdot 0381$, $d_{9}^{61 \cdot} 5^{\circ} 1 \cdot 0209, d_{4^{\circ}}^{88.9} 0.9999$. Apparatus A.

$14.2{ }^{\circ}$	19.71	1.0613	$39 \cdot 17$	$410 \cdot 6$	$40 \cdot{ }^{\circ}$	18.76	1.0383	$36 \cdot 47$	$412 \cdot 3$
$21 \cdot 1$	$19 \cdot 38$	$1 \cdot 0554$	$38 \cdot 30$	$410 \cdot 6$	61.5	17.89	$1 \cdot 0209$	$34 \cdot 20$	$412 \cdot 6$
21.7	$19 \cdot 32$	$1 \cdot 0548$	38.16	$410 \cdot 4$	$85 \cdot 3$	16.96	$1 \cdot 0004$	31.77	$413 \cdot 4$
									411.7

406. n-Propyl phenylpropiolate. B. p. $143^{\circ} / 7 \mathrm{~mm}$; M 188.22 ; ne $1 \cdot 53928, n_{\mathrm{D}} 1.54464, n_{\mathrm{F}} 1.56083$, $n_{\mathrm{G}^{\prime}} 1.57480 ; R_{\mathrm{C}} 56.99, R_{\mathrm{D}} 57.45, R_{\mathrm{F}} 58.86, R_{\mathrm{G}^{\prime}} 60.07 ; M n_{\mathrm{D}}^{20{ }^{\circ}} 290.72$. Densities determined: $d_{4}^{20^{\circ}}$ $1 \cdot 0352, d_{4^{\circ}}^{42 \cdot 1^{\circ}} 1 \cdot 0168, d_{4^{\circ}}^{61 \cdot 6^{\circ}} 1 \cdot 0003, d_{4^{\circ}}^{86 \cdot 7^{\circ}} 0.9793$. Apparatus A.

$13.9{ }^{\circ}$	19.35	1.0403	37.69	$448 \cdot 3$	41.8°	$18 \cdot 26$	1.0171	34.78	$450 \cdot \theta$
$18 \cdot 6$	$19 \cdot 18$	$1 \cdot 0364$	37-22	$448 \cdot 6$	61.6	$17 \cdot 47$	1.0003	$32 \cdot 72$	$450 \cdot 0$
28.5	18.86	$1 \cdot 0281$	36.31	$\mathbf{4 4 9} \cdot \mathbf{4}$	87-0	16.56	0.9791	$30 \cdot 36$	$451 \cdot 2$
								-11 $449 \cdot 6$	

407. n-Butyl phenylpropiolate. B. p. $149^{\circ} / 5 \mathrm{~mm} . ; M 202 \cdot 24$; $n_{\mathrm{C}} 1.53217, n_{\mathrm{D}} 1.53802, n_{\mathrm{F}} 1.55350$,
 $1.0208, d_{4}^{40.0^{\circ}} 1 \cdot 0056, d_{4}^{61 \cdot 0^{\circ}} 0.9892$, $d_{4^{86} \cdot 1^{\circ}}{ }^{\circ} 0.9684$. Apparatus A.

$19 \cdot 3^{\circ}$	$14 \cdot 38$	$1 \cdot 0213$	$36 \cdot 27$	$485 \cdot 7$	$41 \cdot 9^{\circ}$	$13 \cdot 80$	$\mathbf{1 . 0 0 4 1}$	$34 \cdot 22$	$487 \cdot 1$
$22 \cdot 0$	$14 \cdot 32$	1.0193	$36 \cdot 05$	$486 \cdot 2$	$60 \cdot 5$	$13 \cdot 25$	0.9896	$32 \cdot 38$	$487 \cdot 5$
$27 \cdot 2$	$14 \cdot 18$	1.0153	$35 \cdot 55$	$\mathbf{4 8 6 \cdot 4}$	$86 \cdot 2$	$12 \cdot 59$	0.9683	$30 \cdot 11$	$489 \cdot 2$
								Mean $487 \cdot 0$	

408. Methyl cyanide. B. p. $81^{\circ} / 757 \mathrm{~mm}$. ; M 41.05; $n_{\mathrm{C}} 1 \cdot 34233, n_{\mathrm{D}} 1 \cdot 34408, n_{\mathrm{F}} 1 \cdot 34806, n_{\mathrm{G}} 1 \cdot 35087$; $R_{\mathrm{C}} 11.04, R_{\mathrm{D}} 11 \cdot 09, R_{\mathrm{F}} 11 \cdot 21, R_{\mathrm{G}^{\prime}} 11 \cdot 29 ; M n_{\mathrm{D}}^{20^{\circ}} 55 \cdot 18$. Densities determined : $d_{4^{\circ}}^{20{ }^{\circ}} 0.7843, d_{4^{\circ}}^{40 \cdot 4}{ }^{\circ} 0.7639$, $d_{4}^{60.4}{ }^{\circ} 0.7429$. Apparatus A.

$19 \cdot 1^{\circ}$	20.03	0.7852	29.45	121.8	40.6°	18.66	0.7637	$26 \cdot 68$	$122 \cdot 2$
$\mathbf{2 6 \cdot 7}$	19.50	0.7776	28.40	121.9	60.4	17.40	0.7429	$24 \cdot 20$	122.7
								Hean	$122 \cdot 1$

[Merckx, Verhulst, and Bruylants (Bull Soc. chim. Belg., 1933, 42, 777) found $d_{40^{\circ}}^{20^{\circ}} 0.7820, n_{\mathrm{D}}^{20} 1 \cdot 34381$ when extrapolated from data at 15° and 30°.]
409. Ethyl cyanide. B. p. $97^{\circ} / 758 \mathrm{~mm}$.; $M 55.08$; $n_{\mathrm{O}} 1 \cdot 36398, n_{\mathrm{D}} \mathrm{l} \cdot 36578, n_{\mathrm{F}} 1 \cdot 37016, n_{G^{\prime}} 1 \cdot 37327$; $R_{\mathrm{G}} 15 \cdot 68, R_{\mathrm{D}} 15 \cdot 75, R_{\mathrm{F}} 15 \cdot 92, R_{\mathrm{G}^{\prime}} 16 \cdot 04 ; M n_{\mathrm{D}}^{20^{\circ}} 75 \cdot 23$. Densities determined : $d_{4}^{20}{ }^{\circ} 0.7828, d_{4}^{4} \cdot 4^{\circ} 0.7618$, $d_{4^{\circ}}^{61 \cdot 9^{\circ}} 0.7418$. Apparatus D.

19.9°	14.08	0.7829	27.22	160.7	$41 \cdot 3^{\circ}$	13.24	0.7619	24.91	$161 \cdot 6$
28.3	13.85	0.7745	26.49	$161 \cdot 3$	60.7	12.31	0.7430	22.59	161.7
								Mean	$161 \cdot 4$

[Bruylants et al. found $\left.d_{4^{\circ}}^{20} 0.7817, n_{\mathbf{D}}^{20^{\circ}} 1.36585\right]$.
410. n -Propyl cyanide. B. p. $118^{\circ} / 757 \mathrm{~mm}$.; $M 69 \cdot 11$; $n_{\mathrm{C}} 1.38232, n_{\mathrm{D}} 1.38423, n_{\mathrm{F}} 1.38885$, n_{G} $1.39221 ; R_{\mathrm{C}} 20.35, R_{\mathrm{D}} 20.43, R_{\mathrm{F}} 20.65, R_{Q^{\prime}} 20 \cdot 81 ; M n_{\mathrm{D}}^{20^{\circ}} 95 \cdot 66$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0.7913$, $d_{4^{\circ}}^{40.8^{\circ}} 0.7742, d_{4}^{60.6^{\circ}} 0.7559, d_{4^{\circ}}^{85 \cdot 3^{\circ}} 0.7328$. Apparatus D.

$20 \cdot 1^{\circ}$	$14 \cdot 03$	0.7912	27.41	199.9	$60 \cdot 1^{\circ}$	$12 \cdot 39$	0.7563	$23 \cdot 14$	$200 \cdot 4$
$28 \cdot 4$	$13 \cdot 75$	0.7841	$26 \cdot 62$	$200 \cdot 2$	$85 \cdot 7$	11.44	0.7325	$20 \cdot 69$	$201 \cdot \%$
$41 \cdot 0$	$13 \cdot 23$	0.7740	$25 \cdot 29$	$200 \cdot 2$				Mean $200 \cdot 4$	

[Bruylants et al. found $d_{4^{\circ}}^{200^{\circ}} 0.7909, n_{{ }^{2}}^{20^{\circ}} 1 \cdot 38385$.]
411. n -Buityl cyanīde. B. p. $141^{\circ} / 764 \mathrm{~mm}$.; $M 83.13$; $n_{\mathrm{G}} 1.39492, n_{\mathrm{D}} 1.39690, n_{\mathrm{F}} 1.40168, n_{G^{\prime}}$, $1 \cdot 40505 ; R_{0} 24 \cdot 93, R_{\mathrm{D}} 25 \cdot 04, R_{\mathrm{F}} 25 \cdot 31, R_{\mathrm{G}} \cdot 25.50 ; M n_{\mathrm{D}}^{20^{\circ}} 116 \cdot 12$. Densities determined : $d_{4^{\circ}}^{200} 0.7992$, $d_{4^{0}}^{4 \cdot 0^{\circ}} 0 \cdot 7834, d_{4^{6}}^{6 \cdot \cdot 3^{\circ}} 0 \cdot 7667, d_{4}^{86 \cdot 6} 0 \cdot 7437$. Apparatus D.

t.	H.		γ.	P.	t.	H.	$d_{\text {c }}{ }^{\text {co}}$.	γ.	P.
20.0°	13.90	0.7992	27.43	$238 \cdot 1$	$61.6{ }^{\circ}$	12.42	$0 \cdot 7657$	$23 \cdot 49$	239.0
24.6	$13 \cdot 79$	0.7955	27.09	$238 \cdot 4$	86.5	11.56	0.7438	21.23	$239 \cdot 9$
40.6	13.07	0.7837	$25 \cdot 30$	237.9					$238 \cdot 7$

[Bruylants et al.found $d_{4}^{20} 0^{\circ} 0.7992, n_{D}^{20^{\circ}} 1.39711$.]
412. n -Amyl cyanide. B. p. $162^{\circ} / 777 \mathrm{~mm} . ; ~ M ~ 97.16 ; n_{\mathrm{O}} 1.40481, n_{\mathrm{D}} 1 \cdot 40687, n_{\mathrm{F}} 1.41183, n_{\mathrm{G}}$. $1.41543 ; \mathrm{R}_{\mathrm{C}} 29.58, R_{\mathrm{D}} 29 \cdot 72, R_{\mathrm{F}} 30 \cdot 03, R_{\mathrm{G}^{\circ}} \cdot 30 \cdot 26 ; M n_{\mathrm{D}}^{20^{\circ}} 136 \cdot 69$. Densities determined : $d_{4}^{20^{\circ}} 0.8047$, $d_{4^{\circ}}^{40.7^{\circ}} 0.7901, d_{4}^{61.7^{\circ}} 0.7733, d_{4^{\circ}}^{86 \cdot 2^{\circ}} 0.7526$. Apparatus A.

23.2°	18.32	0.8023	27.52	277.4	61.2°	16.62	0.7737	24.08	$278 \cdot 2$
28.4	18.14	0.7984	27.12	277.6	86.8	15.47	0.7521	21.79	$279 \cdot 1$
41.0	17.50	0.7898	25.88	277.5				Mean $278 \cdot 0$	

[Bruylants et al. found $d_{1^{\circ}}^{20} 0.8053, n_{10}^{20} 1 \cdot 40694$.]
413. iso.Amyl cyanide. B. p. $153 \cdot 5^{\circ} / 756 \mathrm{~mm}$.; $M 97 \cdot 16 ; n_{\mathrm{C}} 1.40391, n_{\mathrm{D}} 1 \cdot 40592, n_{\mathrm{F}} 1 \cdot 41092, n_{\mathrm{C}}$. $1.41462 ; R_{\mathrm{C}} 29.59, R_{\mathrm{D}} 29.72, R_{\mathrm{F}} 30 \cdot 04, R_{\mathrm{G}^{\prime}} 30 \cdot 28 ; M n_{\mathrm{D}}^{20^{\circ}}$ 136.60, Densitics determined: $d_{4^{\circ}}^{20^{\circ}} 0.8030$, $d_{4}^{41 \cdot 6^{\circ}} 0 \cdot 7869, d_{4}^{61 \cdot 3^{\circ}} 0 \cdot 7707, d_{4}^{86 \cdot 8^{\circ}} 0 \cdot 7495$. Apparatus A.

20.5°	1.7 .89	0.8026	26.89	$275 \cdot 7$	$61 \cdot 0$	16.04	0.7703	$23 \cdot 15$	$276 \cdot 5$
27.1	17.83	0.7975	26.63	276.8	87.0	14.96	0.7493	20.99	277.5
41.6	17.00	0.7869	25.05	$276 \cdot 2$				Mean $276 \cdot 5$	

414. n -Hexyl cyanide. B. p. $182-182.5^{\circ} / 757 \mathrm{~mm}$. ; $M 111 \cdot 18 ; n_{\mathrm{c}} 1 \cdot 41200, n_{\mathrm{D}} 1 \cdot 41406, n_{\mathrm{F}} 1.41914$, $n_{\mathrm{G}^{\prime}} 1 \cdot 42285 ; R_{\mathrm{C}} 34 \cdot 15, R_{\mathrm{D}} 34 \cdot 31, R_{\mathrm{F}} 34 \cdot 67, R_{\mathrm{G}} \cdot 34 \cdot 95 ; M n_{\mathrm{D}}^{20^{*}} 157 \cdot 22$. Densities determined ; $d_{4^{\circ}}^{20^{\circ}} 0 \cdot 8100$, $d_{4^{\circ}}^{40.5^{\circ}} 0.7945, d_{4^{\circ}}^{6.0^{\circ}} 0.7796, d_{40^{8.0}}{ }^{8 .} 0.7597$. Apparatus A.

21.3°	18.10	0.8089	27.42	314.5	62.5°	16.34	0.7777	23.80	315.7
41.8	17.16	0.7934	25.49	314.9	85.0	15.46	0.7597	21.99	316.9

Mean 315•3
The surface-tension measurements were somewhat erratic and not always accuratcly reproducible: some selected results are given above. The results cannot be regarded as more than approximate, consequently the parachor values are untrustworthy.
[Bruylants et al. found $\left.d_{4^{\circ}}^{20^{\circ}} 0 \cdot 8096, n_{1}^{20^{\circ}} 1 \cdot 41419.\right]$
415. Allyl cyanide. B. p. $118.5^{\circ} / 753 \mathrm{~mm} . ; \quad M 67.09 ; n_{\mathrm{C}} \mathrm{l} \cdot 40342, n_{\mathrm{N}} 1.40593, n_{\mathrm{F}} 1.41214$, $n_{G^{\circ}} 1.41678 ; R_{\mathrm{C}} 19 \cdot 56, R_{\mathrm{D}} 19 \cdot 67, R_{\mathbf{F}} 19 \cdot 93, R_{\mathbf{G}^{\prime}} 20 \cdot 13 ; M n_{\mathbf{D}}^{20^{\circ}} 94 \cdot 32$. Densities determined : $d_{4^{20}}{ }^{\circ} 0.8377$, $d_{4^{4}}^{4} \cdot 6^{\circ} 0.8163, d_{4}^{60} 6^{\circ}{ }^{\circ} \cdot 7988, d_{4}^{8} \cdot{ }^{\circ} 0.7739$. Apparatus D.

$13 \cdot 4^{\circ}$	14.37	0.8441	29.96	$186 \cdot 0$	$42 \cdot 0^{\circ}$	$13 \cdot 28$	0.8159	26.76	$187 \cdot 0$
17.1	$14 \cdot 25$	0.8406	29.58	$186 \cdot 1$	$62 \cdot 1$	$12 \cdot 51$	0.7973	$24 \cdot 63$	$187 \cdot 5$
21.2	$14 \cdot 10$	0.8365	$29 \cdot 13$	186.3	$87 \cdot 5$	11.51	0.7723	$21 \cdot 95$	$188 \cdot 0$
								Mean 187.8	

416. Trimethylene dicyanide. B. p. $140^{\circ} / 8 \mathrm{~mm}$; $M 94 \cdot 12$; $n_{\mathrm{C}} 1.42728, n_{\mathrm{D}} 1 \cdot 42947, n_{\mathrm{F}} 1 \cdot 43492$, $n_{G^{\prime}} 1.43880 ; R_{\mathrm{C}} 24.48, R_{\mathrm{D}} 24.59, R_{\mathrm{F}} 24 \cdot 80, R_{G^{\prime}} 25 \cdot 05 ; M n_{\mathrm{D}}^{20^{\circ}} 134 \cdot 55$. Densities determined: $d_{4^{\circ}}^{20^{\circ}}$ 0.9879, $d_{4 \circ}^{41.1^{\circ}}{ }_{0} \cdot 9721, d_{4 \circ}^{61 \cdot 2^{\circ}} 0.9575, d_{4^{85} \cdot 0^{\circ}}^{0.9398}$. Apparatus D.

16.0°	19.66	0.9909	48.11	250.2	$60 \cdot 6^{\circ}$	18.33	0.9579	43.36	$252 \cdot 1$
$41 \cdot 0$	19.04	0.9720	$\mathbf{4 5} \cdot 70$	251.8	$86 \cdot 1$	17.52	0.9390	$\mathbf{4 0 . 6 2}$	253.1
								Nean 251.8	

The surface-tension measurements presented some difficulty, possibly because the liquid did not wet the glass too well. The results for γ and hence for P must be regarded as approximate only; it is hoped to repeat the measurements by the maximum bubble-pressure method.
417. Phenyl cyanide. B. p. $189^{\circ} / 758 \mathrm{~mm} . ; M 103 \cdot 12$; $n_{\mathrm{D}} 1.52283, n_{\mathrm{D}} 1.52823, n_{\mathrm{F}} 1.54208, n_{\mathrm{G}}$. $1.55346 ; R_{\mathrm{C}} 31 \cdot 31, R_{\mathrm{D}} 31 \cdot 58$. $R_{\mathrm{F}} 32 \cdot 27, R_{\mathrm{G}^{\prime}} 32 \cdot 83$; $M n_{\mathrm{D}}^{20^{\circ}} 157.59$. Densities determined: $d_{4}^{20^{\circ}} 1 \cdot 0058$, $d_{4}^{40 \cdot 3^{\circ}} 0.9885, d_{4}^{60 \cdot 5^{\circ}} 0.9713, d_{4^{\circ}}^{86 \cdot 6^{\circ}} 0.9486$. Apparatus A.

19.3°	20.97	1.0064	$39 \cdot 52$	256.9	$61 \cdot 2^{\circ}$	$19 \cdot 03$	0.9707	$34 \cdot 59$	$257 \cdot 6$
$27 \cdot 0$	20.53	0.9998	$38 \cdot 43$	$256 \cdot 8$	87.0	17.80	0.9483	$31 \cdot 61$	$257 \cdot 8$
40.9	20.01	0.9880	$37 \cdot 02$	$257 \cdot 4$				Mean	$257 \cdot 3$

418. Benzyl cyanide. B. p. $108.5^{\circ} 15 \mathrm{~mm} . ; M 117.15 ; n_{\mathrm{C}} 1.51830, n_{\mathrm{D}} 1.52271, n_{\mathrm{F}} 1.53161, n_{\mathrm{O}^{\prime}}^{\prime}$ $1.54260 ; R_{\mathrm{C}} 34 \cdot 97, R_{\mathrm{D}} 35 \cdot 22, R_{\mathrm{F}} 35 \cdot 72, R_{\mathrm{Q}^{\prime}} 36 \cdot 34 ; M n_{\mathrm{D}}^{20^{\circ}} 178 \cdot 38$. Densities determined : $d_{4}^{20{ }^{\circ}} 1.0155$, $d_{4}^{40 \cdot \sigma^{\circ}} 1 \cdot 0013, d_{4}^{60 \cdot 1^{\circ}} 0.9860, d_{4}^{86 \cdot 0^{\circ}} 0 \cdot 9659$. Apparatus D.

$19 \cdot 5^{\circ}$	$16 \cdot 80$	1.0159	$42 \cdot 15$	$293 \cdot 8$	$60 \cdot 3^{\circ}$	$15 \cdot 48$	0.9861	37.71	$294 \cdot 3$
27.3	$16 \cdot 60$	1.0102	$41 \cdot 42$	$294 \cdot 1$	$86 \cdot 3$	14.47	0.9657	$34 \cdot 51$	$294 \cdot 0$
40.5	$16 \cdot 19$	1.0013	40.04	$294 \cdot 3$				Mean $294 \cdot 1$	

The senior author wishes to express his thanks to Imperial Chemical Industries Ltd. for the liberal grants which have largely defrayed the cost of the investigations described in Parts X-XVII of this series.

Woolwich Polytechnic, London, S.E. 18.
[Received, May 28th, 1947.]

